Обыкновенные дифференциальные уравнения
Загрузка...
Аннотация
Отличается от имеющихся учебных руководств по обыкновенным дифференциальным уравнениям большей, чем это обычно принято, связью с приложениями, в особенности с механикой, и более геометрическим, бескоординатным изложением.
В соответствии с этим в книге мало выкладок, но много понятий, необычных для курса дифференциальных уравнений (фазовые потоки, однопараметрические группы, диффеоморфизмы, касательные пространства и расслоения) и примеров из механики (например, исследование фазовых портретов консервативных
систем с одной степенью свободы, теория малых колебаний,
параметрический резонанс).
Для студентов и аспирантов механико-математических факультетов
университетов и вузов с расширенной программой по математике, но будет интересна и специалистам в области математики и ее приложений.
Описание
Авторы
Составители/Переводчики
Год
2000
Journal Title
Journal ISSN
Volume Title
Издательство
Регулярная и хаотическая динамика
Ключевые слова
Коллекции
dc.contributor.author | Арнольд, Владимир Игоревич | |
dc.date.accessioned | 2017-05-18T06:39:24Z | |
dc.date.available | 2017-05-18T06:39:24Z | |
dc.date.issued | 2000 | |
dc.description.abstract | Отличается от имеющихся учебных руководств по обыкновенным дифференциальным уравнениям большей, чем это обычно принято, связью с приложениями, в особенности с механикой, и более геометрическим, бескоординатным изложением. В соответствии с этим в книге мало выкладок, но много понятий, необычных для курса дифференциальных уравнений (фазовые потоки, однопараметрические группы, диффеоморфизмы, касательные пространства и расслоения) и примеров из механики (например, исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс). Для студентов и аспирантов механико-математических факультетов университетов и вузов с расширенной программой по математике, но будет интересна и специалистам в области математики и ее приложений. | ru_RU |
dc.identifier.citation | Арнольд, Владимир Игоревич. Обыкновенные дифференциальные уравнения / В. И. Арнольд. - 4-е изд. - Ижевск : Редакция журнала "Регулярная и хаотическая динамика" : Удмуртский государственный университет, 2000. - 368 с : граф. | ru_RU |
dc.identifier.other | arhiv_book_02455 | |
dc.identifier.uri | http://eanbur.unatlib.ru/handle/123456789/3984 | |
dc.language.iso | ru | ru_RU |
dc.publisher | Регулярная и хаотическая динамика | ru_RU |
dc.subject | дифференциальные уравнения | ru_RU |
dc.subject | математика | ru_RU |
dc.subject | линейные системы | ru_RU |
dc.subject | линейные уравнения | ru_RU |
dc.subject | векторные поля | ru_RU |
dc.title | Обыкновенные дифференциальные уравнения | ru_RU |
dc.type | Book | ru_RU |